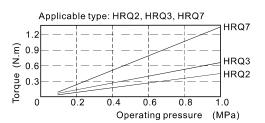
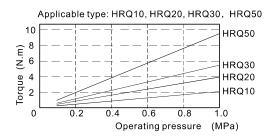


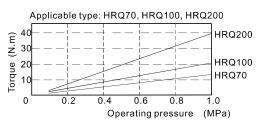
Rotary table cylinder——HRQ Series

Compendium of HRQ Series

Installation and application




- 1. Dirty substances in the pipe must be eliminated before cylinder is connected with pipeline to prevent the entrance of impurities into the cylinder.
- 2. The medium used by cylinder shall be filtered to $40\mu m$ or below.
- Anti-freezing measure shall be adopted under low temperature environment to prevent moisture freezing.
- 4. If the cylinder is dismantled and stored for a long time, pay attention to conduct anti-rust treatment to the surface. Anti-dust caps shall be added in air inlet and outlet ports.


Maximum allowed loading

Loading type					М	odel				
Loading type	HRQ2	HRQ3	HRQ7	HRQ10	HRQ20	HRQ30	HRQ50	HRQ70	HRQ100	HRQ200
Maximum allowed radial loading (N)	18	30	50	80	150	200	300	330	390	540
Maximum allowed axial loading (N)	35	50	70	80	150	200	300	300	500	740
Maximum allowed bending moment (Nm)	0.8	1.1	1.5	2.5	4.0	5.5	10.0	12.0	18.0	25.0

Actual torque output

AITTAL

HRQ Series

Symbol

Product feature

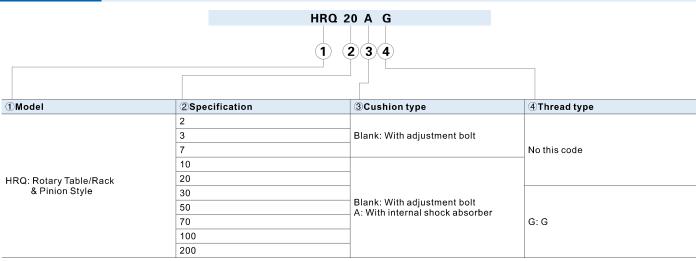
- 1. Rack and pinion design, stable functioning.
- 2. Double cylinder structure, double output could be achieved.
- 3. The manufacturing precision of working platform is high, and is easy for installation, and is of precise orientation.
- 4. The center of working platform has a through hole, and pipe can be located and passed through this hole;
- 5. Guide hole is designed on the both side of the cylinder body (10~200) or undersurface (2~7), which is simply to install.
- 6. Two modes of buffer could be chosen, adjustment bolt buffer and internal shock absorber, the maximum buffer energy of internal shock absorber is 3-5 times that of adjustment bolt buffer.

Specification

Specifica	ation	2	3	7	10	20	30	50	70	100	200				
_			_	, , , , , , , , , , , , , , , , , , ,							200				
Acting typ	oe .			ouble											
Fluid			Air	(to be	filtere	ed by	40µm	filter	elem	ent)					
Operating	With adjustment bolt	0.15~0.7MPa(22~100psi)(1.5~7.0bar)													
pressure	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT			r - 0.15~0.7MPa(22~100psi)(1.5~7.0bar											
Proof pres	ssure			1	.2MPa	a(175	psi)(1	2.0ba	ar)						
Temperat	ure ℃					-20	~70								
Angle adj	ustment range			(~190	0				0~190	0				
Repeatable	With adjustment bolt					0.	2°								
precision	With internal shock absorber		-					0.05°	•						
Theoretic	moment (Nm)(0.5MPa)	0.2	0.33	0.63	1.1	2.2	2.8	5.0	7.5	11.0	22.0				
Cushion	With adjustment bolt				Rı	ubber	bump	er							
type	With internal shock absorber		_				Shoc	k abs	orber						
Port size	End ports			M5×0.8 1/8" [Not											
Port Size		ľ	vio×u.	0			1	И5×0.	.8						
Weight	Weight g			270	535	940	1260	2060	2890	4100	7650				

[Note1] G thread is available.

Add) Refer to P519 for detail of sensor switch.

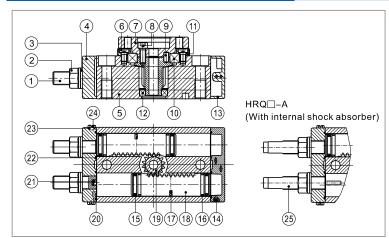

Maximum allowed movement energy and rotation times

Model	Maximal al	lowed energy (J)	Rotation	times (s/90°)
wodei	With adjustment bolt	With internal shock absorber	With adjustment bolt	With internal shock absorber
HRQ2	0.0015	=	0.2~0.7	-
HRQ3	0.002	=	0.2~0.7	-
HRQ7	0.006	-	0.2~1.0	-
HRQ10	0.01	0.04	0.2~1.0	0.2~0.7
HRQ20	0.025	0.12	0.2~1.0	0.2~0.7
HRQ30	0.05	0.12	0.2~1.0	0.2~0.7
HRQ50	0.08	0.30	0.2~1.0	0.2~0.7
HRQ70	0.24	1.1	0.2~1.5	0.2~1.0
HRQ100	0.32	1.6	0.2~2.0	0.2~1.0
HRQ200	0.56	2.9	0.2~2.5	0.2~1.0

[Note

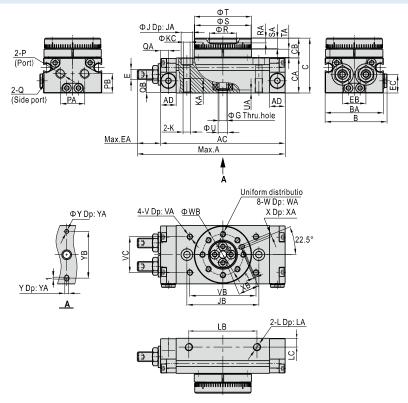
- 1: The movement energy should not exceed the allowed maximum energy, or the inner accessories of product would be damaged;
- 2: When the rotation times of with shock absorber is larger than the allowed tolerance, the bigger effect will be lost.

Ordering code



[Note] HRQ series are all atteched with magnet.

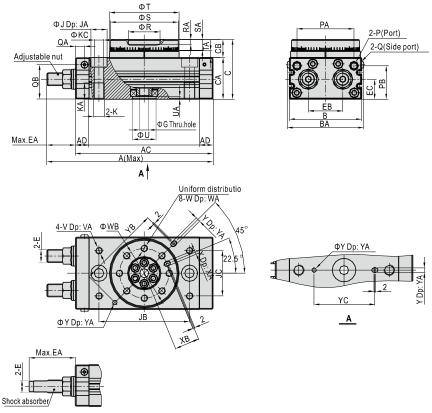
HRQ Series


Inner structure and material of major parts

1 Adjustment bole Carbon 2 Hexagon nut Carbon	
2 Hexagon nut Carbon	steel
3 Seal washer Carbon steel	& Rubber
4 Front cover Aluminum	n alloy
5 Body Aluminun	n alloy
6 Hexagon socket head set bole Carbon	steel
7 Table Aluminun	n alloy
8 Hexagon socket head set bole Carbon	steel
9 Guide pin/flat key Carbon	steel
10 Deep-groove bearing Subasse	embly
11 Bearing retainer Aluminum	n alloy
12 Deep-groove bearing/Needle bearing Subasse	embly
13 Back cover Aluminum	n alloy
14 Steel ball Stainless	steel
15 Piston seal NBF	₹
16 Wear ring Wear resistar	nt material
17 Magnet Rare ea	ırths
18 Rack Stainless steel/	Carbon steel
19 Pinion Chrome molybo	denum steel
20 O-ring NBF	₹
21 Bumper NBF	₹
22 O-ring NBF	₹
23 O-ring NBF	₹
24 Hexagon screw Stainless	steel
25 Shock absorber Subasse	embly

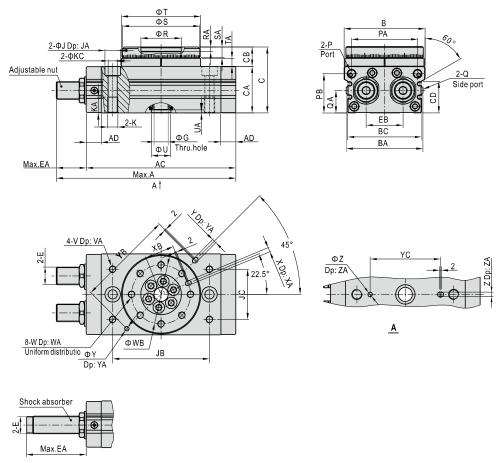
Dimensions

HRQ2/3/7


Type\Item	Α	AC	AD	В	ВА	С	CA	СВ	Е	EA	ЕВ	EC	G	J	JA	JB		K	KA	KC	L	LA	LB	LC	Р		PA
2	76	64	8	32	30	28	18	10	M5×0.	.8 12	12	9.5	4	6	3.5	37	M	4×0.7	7.5	3.5	M4×0.7	7 4	35	4.5	M5×	8.0	12.5
3	82	70	8	36.5	34.5	30.5	20.5	10	M5×0.	.8 12	15.5	10.5	5	7.5	4.5	43	M:	5×0.8	8.5	4.5	M4×0.7	7 4	40	4.5	M5×	8.0	15.5
7	94.5	79.5	8	43	41	34.5	23	11.5	M6×1.	.0 15	18.5	12	6	7.5	4.5	50	M:	5×0.8	8.5	4.5	M5×0.8	3 5	50	5	M5×	8.0	18.5
Type\Item	DD.																										
1 y pe atem	PB	Q	($QA \mid Q$	QB	R	RA	S	SA	T	TA	U	UA	V	<i>r</i>	VA	VВ	VC	w	WA	WB	Х	XA	ХВ	Υ	YΑ	YB
2	10	Q M5×0		-		R 4(H9)		S 29(h9)		T 29.5(h9)		U 5(H9)	UA 1.5	M3×					W M3×0.5			X 2(H9)			Y 2(H9)		YB 24
2 3			0.8	4	6 1	4(H9)	2.5		5.5	T 29.5(h9) 34(h9)	4 :	_		M3×		3.5		18.5		5.5	21 2	-()	2	10.5		2	

HRQ Series

HRQ10~50


HRQ□-A(With internal shock absorber)

Type\Item	A(With i	nternal	shocl	k absorber)	A(With	adjustn	nent bolt)	AC	AD	В	ВА	С	CA	СВ	E		EA(With	internals	shock ab	sorber)	EA(Wit	h adjustm	ent bolt)
10		12	23			112		92	9.5	50	54	47	34	13	M10	×1.0		31				20	
20		16	39			145.3		117	11	65	69	54	37	17	M12	×1.0		52				28.3	
30		17	8.5			154.5		127	11.5	70	74	57	40	17	M12:	×1.0		51.	5			27.5	
50		21	12			185.9		152	15	80	84	66	46	20	M14:	×1.5		60				33.9	
Type\Item	ЕВ	EC	G	J	JA	JB	JC	ı	K	KA	K	С	Р	P	A P	В	Q	QA	QB	R	RA	S	SA
10	20.5	14	5	11	6.5	60	27	M8×	1.25	12	6	.5	M5×0.	3 34	.5 2	8	M5×0.8	4.5	29	20(H9)	4.5	45(h9)	8
20	27.5	16	9	14	8.5	76	34	M10	×1.5	15	8	.5	M5×0.	3 4	7 3	0	M5×0.8	6	30	28(H9)	6.5	60(h9)	10
30	29	18.5	9	14	8.5	84	37	M10	×1.5	15	8	.5	1/8"	5	0 3	2	M5×0.8	6.5	34	32(H9)	5	65(h9)	10
50	38	22	10	18	10.5	100	50	M12	×1.75	18	10	.5	1/8"	6	3 3	8	M5×0.8	10	38	35(H9)	5.5	75(h9)	12
Type\Item	Т	TA		U	UA	V	'	VA		w		WA	V	٧B	Х		XA	ХВ	Υ	Y	4	YB	YC
10	46(h9)	4.5	5	15(H9)	3	M5×	0.8	8	M	15×0.8		8	- ;	32	3(H9	9)	3.5	16	3(H9)	3.	5	56	40
20	61(h9)	6.5	5	17(H9)	2.5	M6×	1.0	8	M	16×1.0		10	4	13	4(H9	9)	4.5	21.5	4(H9)	4.	5	74	50
30	67(h9)	6.5	5	22(H9)	3	M6×	1.0	8	N	16×1.0		10	4	18	4(H9	9)	5	24	4(H9)	4.	5	80	58
50	77(h9)	7.5	5	26(H9)	3	M8×	1.25	8	М	8×1.2	5	12		55	5(H9	9)	6	27.5	5(H9)	5.	5	92	68

HRQ Series

HRQ70~200

HRQ□-A(With internal shock absorber)

Type\Item	A(With	adjust	ment bolt	A(W	ith inter	nal sho	ock abs	orber)	AC	AD	В	ВА	ВС	С	CA	СВ	CD	E		EA(Wit	h adj	ustment	bolt)
70		206.8	8			244			170	17	92	88	84	75	53	22	36	M20×1	.5		3	6.8	
100		225.	7			263			189	17	102	99	95	86	59	27	42	M20×1	.5		3	6.7	
200		279.	5			316.5	i		240	24	120	117	113	106	74	32	57	M27×1	.5		3	9.5	
Type\Item	EA(With	n interna	al shock abs	orber)	EB	G	J	JA	JB	JC	K		KA	KC	Р	PA	РВ	Q	QA	R	RA	S	SA
70		-	74		42	16	17.5	12	110	57	M12×	1.75	18	10.5	1/8"	75	44	M5×0.8	25	46(H9)	5	88(h9)	12.5
100		7	74		50	19	17.5	12	130	66	M12×	1.75	18	10.5	1/8"	85	50	M5×0.8	29	56(H9)	6	98(h9)	14.5
200		7	6.5		60	24	20	12.5	150	80	M16:	×2.0	25	14	1/8"	103	62.5	M5×0.8	36	64(H9)	9	116(h9)	16.5
Type\Item	Т	TA	U	UA	١ ١	,	VA		W	V	VA	WB	Х	X.	A	ХВ	Υ	YA	YB	3 Y	С	Z	ZA
70	90(h9)	9	22(H9)	3.5	M8×	1.25	10	M	3×1.25	1:	2.5	67	5(H9) 5.	5	33.5	5(H9)	3.5	110) 8	0	5(H9)	3.5
100	100(h9)	12	24(H9)	3.5	M8×	1.25	10	M.	10×1.5	1-	4.5	77	6(H9) 6.	5	38.5	6(H9)	4.5	120) 10	00	6(H9)	4.5
200	118(h9)	15	32(H9)	5.5	M12>	1.75	13	M1	2×1.75	5 10	6.5	90	8(H9) 8.	5	45	8(H9)	4.5	140) 11	0	8(H9)	6.5

AITTAE

HRQ Series

How to select product

- 1. Determine the following working conditions according to the actual situation:
- 1.1) Rotation angle θ : The actual rotation angle must be within the maximum allowed range of rotation angle of cylinder.
- 1.2) Rotation time t: The rotation time must be within the maximum allowed range of rotation time of cylinder.
- 1.3) Installation position of cylinder: Allow enough installation space, so as to ensure leaving adequate space for rotation of cylinder and workpieces.
- 1.4) Determination of loading mass and loading shape.
- 2. Calculation of necessary forgue needed when loading rotation (T(N.m):

Calculate the necessary moment required for loading rotation according to the formula below, and combine with the forgue diagram of actual effect, to choose pneumatic cylinder with suitable forgue output.

2.1) Calculation method of moment of inertia in different conditions

	T:Necessary forgue required for loading rotation (N.m)
T	K:Coefficient of allowance, K is defined as 5
$T=K\times I\times \omega$	I:Moment of inertia(kg.m²)
$\dot{\omega} = \frac{2 \theta}{1}$	ω:Angular acceleration(rad/s²)
t ²	θ:Rotation Angle(rad)
	t:Rotation time(s)

Diagram	Description	Calculation formula of moment of inertia	Rotation radius	Diagram	Description	Calculation formula of moment of inertia	Rotation radius		
Disk	d:Diameter (m) m:Mass (kg)	$I = \frac{md^2}{8}$	d²	Rectangle sheet	a:Sheet length (m) b:Length of side(m) m:Mass(kg)	I=\frac{m(a^2+b^2)}{12}	a²+b² 12		
		Note: no special installat	ion direction		III.Wass(kg)	Note: no special installa	tion direction		
Classified disk	d ₁ :Diameter(m) d ₂ :Diameter(m) m ₁ :d ₁ Mass(kg)	$I = \frac{m_1 d_1^2 + m_2 d_2^2}{8}$	$\frac{{d_1}^2 + {d_2}^2}{8}$	Rectangle sheet	a:Sheet ength (m) m:Mass (kg)	$I = \frac{ma^2}{12}$	<u>a²</u> 12		
1	m ₂ :d ₂ Mass(kg)	Note: compare d_1 with d_2 , if d_1 is extremely tiny	disregard d ₁			Note: no special installa	tion direction		
Disk		md²	d²	Rectangle sheet		$I=\frac{ma^2}{3}$	- a ² - 3		
$\left(\begin{array}{c} d \\ \end{array}\right)$	d:Diameter (m) m:Mass (kg)	$I = \frac{\text{md}^2}{16}$ Note: no special installat	d ² 16 ion direction		a:Sheet ength (m) m:Mass (kg)	Note: 1. horizontal installation. 2. pay attention to the change of moveme time when vertical installation.			
Sphere	r:Radius(m) m:Mass(kg)	$I = \frac{2mr^2}{5}$	2r ² 5	Rectangle sheet	a:Sheet length (m) b:Distance between the rotation axis and the gravity center of loading(m)	$I = \frac{ma^2}{12} + mb^2$	$\frac{a^2}{12} + b^2$		
		Note: no special installat	ion direction	"	m:Mass(kg)	Note: the cuboids are sa	ıme too.		
Thin-stick $a_1 \qquad a_2 \qquad a_3 \qquad a_4 \qquad a_5 \qquad a_5 \qquad a_6 \qquad$	a,:Length of stick(m) a ₂ :Length of stick(m) m,:a, Mass(kg) m ₂ :a ₂ Mass(kg)	I=\frac{m_1a_1^2 + m_2a_2^2}{3} Note: 1. horizontal installation 2. pay attention to the change time when vertical installation	of movement	Number of teeth a	a:Tooth number of gear b:Tooth number of loading gear	$I_a = \left(\frac{a}{b}\right)^2 I_b$			
Rectangle sheet	a ₁ :Sheet length (m) a ₂ :Sheet length (m)	$I = \frac{m_1(4a_1^2 + b^2) + m_2(4a_2^2 + b^2)}{12}$	$\frac{2a_{1}^{2}+2a_{2}^{2}+b^{2}}{6}$	Concentrated load	a ₁ :Vertical distance between the rotation axis and the concentrated	$I = m_1 a_1^2 + \frac{m_2 a_2^2}{3} + m_1 K$ Note:			
a. a. b	b: Length of side(m) m,:a, Mass(kg) m,:a, Mass(kg)	Note: 1. horizontal installation 2. pay attention to the change time when vertical inst	of movement	a, a,	loading(m) a _z :Length of arm(m) m ₁ :Mass of concentrated loading(kg) m ₂ :Mass of arm(kg)	Norizontal installation. Compared with m, disregard if m is extremely tire. Calculate K according to the concentrated loading row by when the loading is spheroid.	shape of row. For example,		

3. Calculation of maximum movement energy $E_{\mbox{\tiny max}}(J)$:

Calculate the maximum movement energy E_{max} according to the formula below, and make sure that the maximum movement energy is within allowed energy range of the chosen pneumatic cylinder, excessive large movement energy would lead to damage of inner parts, please choose rotation cylinder attached with shock absorber when the movement energy is fairly large.

$$E_{max} = \frac{1}{2} I \omega_{max}^2$$
 $\omega_{max} = \frac{2 \theta}{t}$ ω_{max} : Maximal angular velocity (rad/s)

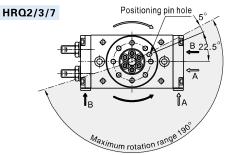
4. Calculation of loading rate

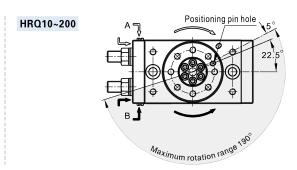
Calculate the loading rate according to the formula below, and the loading rate must not be more than 1.

Loading rate =-	W _s Maximal allow axial loading	ed -	+ W _r Maximal allowed radial loading	+	M Maximal allowed bending moment of working platform	
W _s : Actual a	xial loading V	/,: .	Actual radial loading	N	##: Actual loaded bending moment of working platform	

5. Determination method

It could be used only when the chosen pneumatic cylinder must meet the requirements of article 2, 3 and 4 simultaneously.

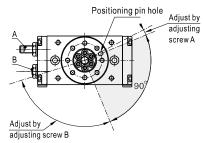


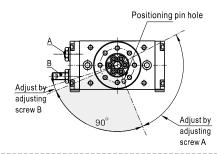

AITTAL

HRQ Series

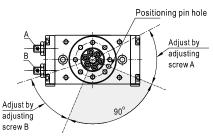
Installation and application

- 1. Rotation Direction and Rotation Angle
- 1.1) Rotation Direction

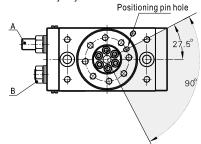


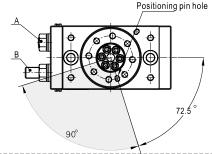

- A) By adjusting the adjustment bolt, the rotation end can be set within the range shown in the up drawing: Maximum ratation is 190°;
- B) The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
- 1.2) Rotation Range Example (90° Rotation)

HRQ2/3/7

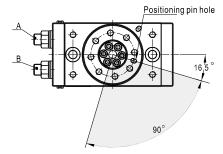

Adjustment amount by adjustment bolt B

Adjustment amount by adjustment bolt A


Adjustment amount by adjustment bolt A, B


1.3) The rotation angle can also be set on a type with internal absorber.

HRQ10~200


Adjustment amount by adjustment bolt B

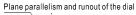
Adjustment amount by adjustment bolt A

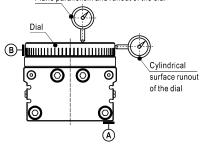
Adjustment amount by adjustment bolt A, B

Model	Adjustment angle per rotation of angle(adjustment screw)	Model	Adjustment angle per rotation of angle(adjustment screw or shock absorber)
HRQ2	11.5°	HRQ10	10.2°
HRQ3	10.9°	HRQ20	6.5°
HRQ7	10.2°	HRQ30	6.5°
		HRQ50	8.2°
		HRQ70	7.0°
		HRQ100	6.1°
		HRQ200	4.9°

HRO Series

- 2. The range of rotation angle has been adjusted to the maximum in the factory, please do not enlarge the rotation angle any more.
- 3. The movement energy should not exceed the allowed maximum energy, or the inner parts will be damaged.
- 4. The rotary parts need no lubrication.
- 5. Series HRQ is equipped with a rubber bumper or shock absorber. Therefore, perform rotation adjustment in the pressurized condition(minimum operation pressure: 0.1 Mpa or more for adjustment bolt and internal shock absorber types, and 0.2 MPa or more for external shock absorber type.)
- 6. Refer to the table below for tightening torques of the shock absorber setting nut.


Shock absorber size	Max. tightening torque(Nm)
M10	3.5
M12	8.0
M14	11.0
M20	24.0
M27	63.0


- 7. Never loosen the bottom screw of the shock absorber. (It is not an adjustment screw.) That may cause oil leakage.
- 8. Shock absorbers are consumable parts.

When a decrease in energy absorption capacity is noticed, it must be replaced.

Rotary table cylinder	Shock absorber	
HRQ10	ACA1006-A	
HRQ20\HRQ30	ACA1215-A	
HRQ50	ACA1416-A	
HRQ70\HRQ100	ACA2020-A	
HRQ200	ACA2725-A	

9. Strictly control run out and parallelism of the dial according to the requirements of the following table.

Items	Specific requirements	Relative datum
Plane parallelism of the dial	0.1	Α
Plane runout of the dial	0.1	Α
Cylindrical surface runout of the dial	0.1	Α